翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Poisson-Lie group : ウィキペディア英語版
Poisson–Lie group
In mathematics, a Poisson–Lie group is a Poisson manifold that is also a Lie group, with the group multiplication being compatible with the Poisson algebra structure on the manifold. The algebra of a Poisson–Lie group is a Lie bialgebra.
==Definition==
A Poisson–Lie group is a Lie group ''G'' equipped with a Poisson bracket for which the group multiplication \mu:G\times G\to G with \mu(g_1, g_2)=g_1g_2 is a Poisson map, where the manifold ''G''×''G'' has been given the structure of a product Poisson manifold.
Explicitly, the following identity must hold for a Poisson–Lie group:
:\ (gg') =
\ (g') +
\\} (g)
where ''f''1 and ''f''2 are real-valued, smooth functions on the Lie group, while ''g'' and ''g are elements of the Lie group. Here, ''Lg'' denotes left-multiplication and ''Rg'' denotes right-multiplication.
If \mathcal denotes the corresponding Poisson bivector on ''G'', the condition above can be equivalently stated as
:\mathcal(gg') = L_(\mathcal(g')) + R_(\mathcal(g))
Note that for Poisson-Lie group always \(e) = 0, or equivalently \mathcal(e) = 0 . This means that non-trivial Poisson-Lie structure is never symplectic, not even of constant rank.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Poisson–Lie group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.